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I. Phys. A: Math. Gen. 19 (1986) 2099-2104. Printed in Great Britain 

Two-dimensional electrodynamics and the global structure of 
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2RD. U K  

Received 19 March 1985, in final form 7 November 1985 

Abstract. Two-dimensional electrodynamics based on the spacetime S’ 8 R  is formulated 
using Fourier series and Dirac’s constraint theory. The role of the background electric 
field F as a dynamical variable is established. We show that the background field is unstable 
against a class of charged pair creation processes involving the global topology of S’ 
provided IFI>fe,  where e is the unit of electric charge. Our results do not require any 
discussion of the Coulomb Green function or of the role of charges on spatial boundaries. 

I .  Introduction 

The motivation for this paper arises from our studies of the Schwinger model (Schwinger 
1962, Lowenstein and Sweica 1971) (QED in 1 + 1 dimensions with massless fermions), 
which we hoped would give us insight into the solvable aspects of QED in 1 + 3  
dimensions. The Schwinger model is one of a few completely soluble quantum field 
theories, and its extension to the massive fermion case has been investigated in some 
detail (Coleman 1976, Coleman et al 1975). 

In two spacetime dimensions, the electric field F,, may be written as 

Fo,(x, t )  = 1 dy ~ ( x ,  y) j0 (y ,  t )  + F 

where the Coulomb Green function K ( x ,  y )  satisfies the equation ( d / a x ) K ( x ,  y )  = 
-S(x - y ) ,  jo (y ,  t )  is the charge density and F is an arbitrary constant. Coleman (1976) 
referred to F as the background electric field, and argued that it would he stable 
against spontaneous charged pair creation provided IF1 $e, where e is the unit of 
electric charge. The argument involves a solution to the classical Euler-Lagrange 
equations for the electromagnetic fields in the presence of external charges, after first 
gauging the spatial component of the vector potential to zero (the ‘axial’ gauge). This 
phenomenon has stimulated discussions on the role of inequivalent vacua in gauge 
theories. Coleman’s spacetime is ROR with the usual Minkowski metric. 

Subsequently, Tyburski (198 1) re-examined Coleman’s argument, truncating space- 
time to [ - L ,  L]OR and imposing periodic boundary conditions. He argued that the 
background field is a dynamical variable and. regardless of its magnitude, is stable 
against spontaneous pair creation. Furthermore, the axial gauge cannot be imposed 
in his model. Both Coleman and Tyburski discussed the relationship of the background 
field to charges at spatial boundaries, and the arguments of each depend on the 
Coulomb Green functions used. 
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We reformulate Tyburski’s model on a spacetime with the topology of S’ OR, with 
the requirement that all functions be single-valued. This allows us to avoid discussing 
charges on spatial boundaries in a natural way. After specifying the Lagrangian for 
electromagnetic potentials in the presence of external sources, we follow Tyburski 
(1981) and employ a Fourier series expansion of all fields and currents. Then, by 
systematically applying Dirac’s constraint theory (Dirac 1964) we show that Cole- 
man’s results can be obtained for S’OR without a discussion of the Coulomb Green 
function. This result is gauge independent, and the same approach proves that, 
classically, states of non-zero net charge are inconsistent with the dynamics. This last 
result is intimately linked to the topology of our spacetime. 

2. General formalism 

On S’OR the electromagnetic potentials A” = ( c p ,  A )  may be expanded as a Fourier 
series: 

where the coefficients a,, a , ,  . . . , go, g ,  , . . . , are time dependent and C,, = cos( n r x /  L ) ,  
S, = sin( m r x /  L )  are elements of a complete orthogonal set on SI. 

The chosen Lagrangian is 

L [ p , j ] = [ ‘  - L  ( -~F, ,Fw”+j ,A”)dx (2.2) 

where Fpy = a,A, -JAW are components of the Faraday tensor and j ”  = ( p , j )  is the 
classical external charge density current. Of course, our choice of spacetime restricts 
the class of coordinate transformations which leave the Lagrangian (2.2) invariant. 
We assume that in the limit L+m we recover the usual relativistic framework. The 
same assumption is made in Tyburski’s approach. With the expansions (2.1) the 
Lagrangian (2.2) becomes 

n = l  n = l  

where A,,=(j,C,,), B,,=(j,S,,),  G,,=(p,C,), H , , = ( p , S , , )  with ( u , u ) =  
J k L  u(x)u(x) dx. 

We regard the coefficients a,, a , ,  . . . , g o , .  . . , h , ,  . , . , as the dynamical degrees of 
freedom and apply Dirac’s formalism for constrained systems (Dirac 1964) to the 
Lagrangian (2.3). For each degree of freedom q the canonical conjugate momentum 
cj = d L [ p , j ] / d q  has canonical Poisson bracket ( P B ) , { ~ ,  q}pB = -1 with all other brackets 
zero. The strong equalities 

- I  n - 2Lan 
a,, = La,, + n r h ,  F,, = ~ b , ,  - nrg,, n 2 l  
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are used subsequently to constrain the possible gauge transformations. We find the 
primary constraints 

gn = 0 n 3 O  

Ln=0 n 3 1  (2.4) 

and, subsequently, the secondary constraints 
-( n n /  L)& + G, = 0 

( n n /  L )d ,  + H ,  = 0 

n z l  

rial. 

Clearly, all momenta are constrained except do; we identify this momentum as propor- 
tional to the background field P ( t )  of Tyburski (1981). 

Significantly, the consistency condition Go = 0, i.e. 
L 

p(x, t )  dx = 0 L 
emerges directly from the formalism. This means we have no choice but to work with 
states of total charge zero on S I .  This result may be viewed in two ways: 

(i) as a consistency condition obtained from Dirac's constraint theory applied to 
the Lagrangian (2.3), with no reference to global topology, or 

(ii) as a consequence of the topology of S'. An isolated electric charge e radiates 
a constant electric field in each direction. These fields must meet somewhere in S',  
and be absorbed by a sink charge - e  in order to maintain a single-valued field. 

On the surface of constraint in phase space the Hamiltonian becomes 
oc 03 

H[p,j]-  L - ' t i ~ + i ~ , A , + i L  ( n n ) - * ( G ~ + H ~ ) +  (a,A,+ b,B,). (2.6) 
n = l  n = l  

The temporal stability of the constraints (2.4) and (2.5) imposes the following conditions 
on the current: 

nTB, = - LG, 
nTA, = LH, n 3 1  

which corresponds to the continuity equation 

p + a j  = 0. 
All constraints are first-class and generate the gauge transformation 

A' + A' - ap A 

where A is periodic on [ - L ,  L ]  (Tyburski 1981), or in our terms single-valued on S'. 
Clearly, a ,  is gauge invariant, and consequently the axial gauge ( A  = 0) cannot be 
used in our model, a result also found in Tyburski's formulation. Although the 
equations of motion are found to be gauge invariant, we note that the Hamiltonian 
on the surface of constraints (2.6) is not. This is because our original Lagrangian 
(2.2) neglects the constituent fields of the current, which would provide compensating 
gauge terms. However, the energy changes we calculate below are all gauge invariant. 

In 0 4 we make use of the equation of motion for d o ,  given by 

(2.7) Bo=-'A 2 0 =-I 2 jL dxj(x,  t ) .  
- L  

This shows that the background field is not independent of the charge current, a point 
overlooked by Tyburski. 
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3. Static charge pair 

If we consider the static charge case then j = 0 and the energy E(p,  0) of the system 
is given by 

m 

E ( p ,  0 )  = L-'cii+lL (n.ir)-'(G;+ H ; )  
n = 1  

which is gauge invariant. The only dynamical variable in this case is do,  which is time 
independent because j = 0 in (2.7). We cannot gauge this variable away, because it has 
zero Poisson bracket with all the first-class constraints, and  we identify it as proportional 
to the background electric field of Coleman and Tyburski. 

Tyburski's motivation for truncating space was to provide a finite procedure for 
placing charges on boundaries and then taking the limit L+w.  Care must be taken 
in such cases. To illustrate, we consider a state containing a static charge density 

p ( x ) = e [ s L ( x - r ) - s L ( x + r ) ]  O c r < L  

where S'(x) is the periodic delta function on S' defined by its Fourier series 

s L ( x ) = t L - l + L - l  c cos - . 
n = l  r L X )  

Then 

G" = o  
Hn = 2e  sin( n r r /  L )  n z O  

giving 

E ( r )  = ~- 'c i i+ e2r ( l  - r / L )  (3.1) 
for the energy of the state. This energy is invariant under the substitution r + L - r, 
which reflects the global topology of SI. 

If we calculate the energy difference A E  = E ( r )  - E ( 0 )  we find 

A E  = e'r( 1 - r / L )  (3.2) 
which is never negative. This argument was used by Tyburski to substantiate his claim 
that the introduction of charged pairs could not decrease the energy of the system, in 
contradiction with Coleman's result for ROR. The result holds if we take the limit 
r +  L in (3.2), which corresponds to placing charges on the boundaries of Tyburski's 
space [ -L,  L ] .  

However, this argument is incorrect because it ignores the coupling ( 2 . 7 )  of the 
background field to the charge currents, which necessarily arise whenever we move, 
create, or annihilate charges. In the next section we present a vacuum fluctuation 
process which has no affect other than to change the background field. 

4. Vacuum fluctuations 

We consider a vacuum fluctuation process described by the following charge and  
current densities 

p ( x ,  t )  = e [ s L ( ~ - ~ r ) - ~ ' ( x + ~ r ) ] [ e ( t ) - ~ ( t - ~ / u ) ]  

j ( x ,  t ) =  e u [ ~ ~ ( x - ~ t ) + t " ( x + ~ r ) ] [ e ( f ) - e ( r - ~ / u ) ]  
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where e ( t )  is the unit step function. These densities model a vacuum fluctuation 
process which starts with no charges in the system for negative times. At time t = 0 a 
charge pair is created at the origin. Subsequently, these charges separate with equal 
and opposite velocities, finally annihilating at the antepodal point x = + L  at time 
t = L/ U. For times t > L/  U the system has apparently reverted to its initial charge-free 
state. We now show this is not the case. 

For negative times the initial energy of the system Ei depends only on the initial 
background field F = L-'Bo( -CO), given by 

E, = LF'. 

During the vacuum fluctuation, a,( 1 )  changes according to ( 2 . 7 ) ,  and for t > L/ U we 
find d,(w) = Bo( -CO) - eL, giving 

E f = L ( F - e ) '  

for the energy of the system after the vacuum fluctuation process has ended. The 
change in energy produced by the vacuum fluctuation is therefore 

AE = Ef-Ei= L e ( e - 2 F ) .  

This can be negative if IF\> :e. 
Physically, the above process corresponds to the creation of a closed electric flux 

string around SI, adding or subtracting a field strength e to the original background 
field. This is the S'OR analogue of Coleman's ROR result. Of course, the appearance 
in this classical theory of apparently quantised units of electric flux depends on the 
assumption that classical electric charges occur in multiples of the fundamental charge 
e only. 

It could be argued that the speed of light is a natural upper bound to the pair 
separation speed U in the above process, and that a value of L of cosmological 
proportions would imply a long time scale for the above process to be completed. 
This argument can be circumvented by considering the spontaneous creation of many 
charged pairs distributed uniformly around SI, specified by the charge and current 
densities: 

p ( x ,  t )  = e C [ 6 ' - ( ~ - 2 a n  - ~ t ) - 6 ~ ( ~ - 2 a n  + u t ) ] [ e ( t )  - e ( t -  a l u ) ]  

j ( x ,  t )  = eu [ s L ( x  -2an  - u t ) +  a L ( x  -2an  + u t ) ] [ e ( t )  - e(  t - a / u ) ]  

where L = 2aN.  This process corresponds to the creation of 2 N charged pairs, whose 
equal and opposite members separate and travel for a period L / 2 N u  until they meet 
and annihilate opposite members of adjacent pairs. The net result is the addition of 
a closed electric flux loop of strength e to the background field, as before. In this case 
the time of duration of the process may be made arbitrarily small by taking N large 
enough, keeping U below the speed of light. 

N 

n = l - N  

N 

n = l - N  

5. Summary 

We have examined the stability of the background electric field F in a classical model 
of two-dimensional electrodynamics on the spacetime S'OR. We have shown that F 
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is unstable against a class of vacuum pair creation processes provided lFl>ie.  This 
result supports Coleman’s arguments concerning the origin of inequivalent or 6 vacua 
in the Schwinger model. 

The phenomenon responsible for this instability is the spontaneous creation of 
closed electric flux strings of field strength e. The result is determined by the dynamical 
nature of the background field and the topology of our spacetime, is gauge invariant, 
and requires no discussion of the Coulomb Green function or of charges on spatial 
boundaries. Furthermore, we have shown that the axial gauge cannot be used in the 
model and that states of non-zero net electric charge cannot exist. 
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